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A probabilistic model for the transport of a reacting species in fractured rock is presented. Particles are
transported by advection through a seriesnofock fractures, and also diffuse and react chemically in the
surrounding porous medium. The fracture attributes are unobserved with predefined statistical distribution. The
time of arrivalt,, of a given fraction¢ of an initial solute pulse, a key quantity used in a variety of applica-
tions, is related to the statistics for fracture apertures and lengths. A classification scheme is developed for the
largen asymptotics ot ,. The expected value and variancetgfare available explicitly if the aperture and
length distribution have finite variance. The expedtgds infinite, and its probability distribution is related to
asymmetrical Levy distributions in the case of a power-law distribution for lengths. The most probable time of
arrival is proposed as a robust alternative to the expected value. A scaling transition in the most frpbable
versusn is found as the power-law exponent changes. These results suggest that risks associated with migrat-
ing contaminants may be misrepresented by conventional stochastic anfBi®83-651X98)10606-2

PACS numbgs): 47.55.Mh, 92.40.kf, 66.306:h, 05.40:+]

I. INTRODUCTION verge, and the sample moments are unreliablegferx. In
particular, the length variance is ill defined, and conditions
Transport through an interconnected network of fracturegequired for the central limit theorem are not met when
in an otherwise low-permeability medium is a key issue in<2, the situation observed frequently in field studies. Even
subsurface geophysics. Such networks allow contaminants {8€ mean value is undefined far<1. Although the result of
reach and move through groundwater aquifers, provide trangt power-law distribution of lengths is well established em-
port pathways for radionuclides escaping future deep-rocRirically, the consequences of this for transport have not

waste repositories, and affect the recovery of hydrocarbon@e€n explored. , _
from fractured reservoirs. Uncertainty about the fracture pa- W& Propose a stochastic model for transport and retention

rameters is an unavoidable issue in these applications, as it {§ fractured rock, and use this model to explore the implica-
usually not possible to have direct observation of fractureions Of & power-law fracture length distribution. Most stud-
attributes in the subsurface. For this reason, there is greifS ©f transport in fractured rock rely on continuum-level

interest in developing probabilistic frameworks for assessing'€Scriptions for the fracture network and host medium. How-
uncertainty and ris{1]. Of particular interest is the time €Ver, the conditions necessary for employing an effective-

required for solutes to move through a fracture network. StoMedium approximation to the fracture network are often not

chastic analysis of this travel time is complicated by micro-Met in practice. We focus on the opposite limit Whe_re the
scopic exchange processes which act to retain solutes in tjg2cturé network is barely connected, and transport is con-
host rock. These includenatrix diffusion the process by fined to highly localized channels or pathways through the

which particles diffuse into the stagnant water in the pord’€Work. Transport in this situation is controlled by large-
space of the surrounding rod], and physical adsorption scale fluctuations in advection coupled with the microscopic

and desorption combined with chemical reactions, collec/€t€ntion processes, a common situation in environmental

tively referred to asorption which acts to further slow the SYStems[4]. Advective transport through the fractures is
downstream movement of particles. modelt_ad asa random flight with flnlte—vgnance or power-law
Stochastic analysis of transport in fractures is furtherSteP distribution. A second random variable correlated with
complicated by the wide distribution of fracture attributes the step size is introduced to control the retention processes.
which may be inconsistent with basic assumptions underly-
ing widely used statistical concepts. For example, field stud-
ies of fractured rock often support a power-law model for the
distribution of fracture lengths$, [3], PHl;>s}x s~ ¢ for Most studies of transport in fractured media rely on
large s. In this situation the theoretical momentk]) di-  continuum-level models derived, for example, via effective-

Il. APPROACHES TO MODELING TRANSPORT
IN FRACTURED ROCK
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medium theory[5]. This general approach can be extended
to include the retention processes of diffusion and sorption
by defining two interacting continua, one for the fractures
and another for the porous medium. These are referred to as
dual-porosity models. More sophisticated versions, the dual-
permeability models, allow for flow in both the fractures and
the rock matrix. These dual-permeability—dual-porosity
models require the fracture density to be large compared to
the threshold for percolation. They also require the scale of
support for the continuum properties to be large compared to
the largest fractures. These situations are often not realized in
practice. Moreover, these continuum-level models do not ad-
dress explicitly the issue of prediction uncertainty, which is
of prime interest in contemporary environmental applica-

tior|1_|s. h d Sahiniél d ibed limitati f the dual species in fractured rock. Fluid flowing through a connected series
ughes and Sahini6] described limitations of the dual- of n rock fractures transports solutes along a streamtube determined

continuum models, and deve'F’ped an alternative Iattic%y the two streamlines bounding the initial release. Particles diffuse
model that allows for transport in both pores and fracturesy: immobile fluid in the rock surrounding the fractures, where

and exchanges between the two. They analyzed this model {jey may also undergo chemical reactions. The streamtube mean-
one spatial dimension and developed an effective-mediurers through individual fractures and passes from fracture to frac-
approximation. In one spatial dimension, the model in Refiyre as it travels from release point A to outlet B. Branching at
[6] is unable to describe diffusion controlled exchanges befracture intersections is ignored. The streamtube is modeled as a
tween the fracture and surrounding rock volume. The differtectangular channel with a piecewise constant aperture and a con-
ential equations describing advection coupled with matrixstant widthw, set by the size of the initial release. The apertures
diffusion can be cast into a lattice form similar to the one inand lengths for the fracture segments in the flow path are modeled
Ref.[6], but two spatial dimensions are required. Moreover,as independent and identically distributétD) random variables.

this lattice formulation results in fracture-to-matrix exchange

rates that are correlated with the site-to-site transition rates, a our main simplification is to ignore multiple routes

situation in conflict with the basic assumptions in Réfl.  through the fracture network and focus on a single flow path
Finally, _the approach does not deal explicitly with predictionfgrmed byn quasi-two-dimensional fractures connected in
uncertainty. _ series(Fig. 1). This approximation improves as the fracture

Discrete fracture models constitute another general apjensity approaches the percolation threshold. Other factors
proach to modeling transport in fractured rock. In this ap-improving the quality of this approximation include broad
proach, fractures with predefined distributions of aperturegistribution of apertures and lengths, preferred spatial orien-
length, and orientation are placed randomly in a simulatioRation and spatial clustering of fractures, incomplete mixing
domain. Flow and transport can then be calculated for they fracture intersections, and spatial localization of the par-
simulated fracture network. This Monte Carlo approach isijcle source.

useful for site-specific engineering studies. In most application scenarios, solute particles are released
~ The approach taken here is similar to the fracture-networlgig regions that are small compared to the physical width of
simulations in that no attempt is made to define an effectivg, fracture. In the absence of strong dispersion internal to the
medium. The difference is that we also do not attempt afractyre, particles will not spread out and sample the entire
exact calculation for transport in the multiply connected netsraciure surface, but will be transported along a streamtube
work. An approximation is considered instead, justified bygetermined by the two streamlines bounding the initial re-
field results and previous modeling work, that allows for ajgase. This is consistent with the flow path model described
more generic analysis. in [9-11]. Our flow path model, then, consists of a rectan-
gular streamtube with spatially varying apertuyéx) and
width w(x), wherex is the distance along the streamtube
trajectory andb(x) <w(x). Water flows through this stream-
Exact analysis of flow and transport in a fracture networkgube at a constant volumetric ra@. Aperture variability
requires consideration of the multiple routes that particlesnternal to each fracture will cause the width to fluctuate
may take. This complication is why studies using discrete-aroundw,, the size of the initial release. Fracture-to-fracture
fracture models rely on Monte Carlo simulation of the frac-variability will also cause the local mean in the aperture to
ture networks. Such simulations using field-derived fractureuindergo stepwise changes as the streamtube passes from one
attribute distributions reveal that a small number of transporfracture to the next. For simplicity, we neglect internal vari-
pathways are often responsible for the majority of the masability in fracture apertures relative to fracture-to-fracture
flux [7]. Moreover, when the particle source is spatially lo- variability. The flow path then becomes a sequencenof
calized, a single dominant transport pathway is often foundsegments, each with a constant apertyrea random length
As Sahimi pointed ouf5], this is consistent with a barely [;, and the same widttv,. The goal is to relate the statistics
connected network near the percolation threshold. More imfor flux and related quantities at the output of tith fracture
portant, it is supported by field experiments on tracer transto the probability density functioPDF) for fracture aper-
port [8]. tures and length.

FIG. 1. Conceptual model of a migration pathway for a reacting

lll. FLOW PATH MODEL



57 TRANSPORT AND RETENTION IN FRACTURED ROCK: ... 6919

IV. RETENTION MODEL turn depend on the random apertures and lengths. If the
length or aperture moments exist, they can be related to the
oments ,, thus providing a simple method for calculating
he quantities required in applications based on quantities
estimated in field studies. Specific results and examples can

%e found in[12].

In the situation of a power-law distribution for lengths,
%), and thus the expected value for the arrival tifog),
ecomes infinite if matrix diffusion is present€0). This
is caused by long tails in the length distribution, and should
not be confused with spatial localization. Physically, par-
H 252 ticles have a small but significant probability of encountering
(t—7)kpB — KB . ; .
r(t;r,B)= ex;{ ) (1)  fractures with long residence times and lageThese rare

2\/;(t— )32 4(t—17) fractures dominate the ensemble averages and render sample
statistics unreliable. The implications are fundamental: if
Here H( ) is the unit step functionk=6\DRy, 6 is the  fracture lengths have a power-law distribution, then the com-
matrix porosity,R,=1+Kg', K is the distribution coeffi- mon practice of calculating expected values and variances in
cient for sorption in the matrix, anD is the coefficient of the predicted arrival times of contaminants may be unreli-

Downstream movement of solutes is slowed by diffusion
into an essentially immobile fluid in the rock pore space, an
by linear equilibrium sorption in the matrix. We neglect, for
simplicity, sorption on the fracture surface and concentrat
on diffusive effects. If diffusion in the rock matrix is one
dimensional without barriers and orthogonal to the fracture
plane, the time-dependent flux of solutes at the output of th
nth fracture due to & function input at the beginning of the
first fracture is[10,11]

diffusion into the rock matrix. able, and should be replaced with more robust measures that
The random variable is the residence or transit time for are less sensitive to tails of the distribution.
advection, and the new random varialflecontrols the rate One alternative to moment analysis is to calculate the full

of diffusion and surface sorption. The macroscopic randonprobability density functiofPDF) for t,,
variablesr and 8 in Eq. (1) are

g ft)= | (B d8= [ 1o 088, np2d
1 <1 o) = | Tat,Pole o TeABts
T= 6fow(x)b(x)dx—; Ti_a; lib;, @

2
10 n L0 For independent and identically distributédD) fractures,
B= _f w(x)dx=2 8= —E I, the densityf; ; is related tq that of the individual fractures
QlJo ] q7T f .-, by ann-fold convolution
whereq=w,/Q, andl =2, is the total length along the
trajectory. The approximations in EQ) apply within the
context of our piecewise constant approximation to the flo
path.
The time of arrival of a cumulative mass fractignis an

Tpr(v,0)=[Tp, - (v,0)]" ®)

V‘(NhereTB,T is the fourier transform of ;5 .. Using our piece-
wise constant approximation to the flow pa=1,/q, 7

: Lo . S =byl;/q, and
important quantity in environmental applications. Its value
relative to the half-life for radionuclide decay or chemical q T
degradation is particularly important when considering mi- fp,n(Bi,Ti)= Eﬁl,bl(ﬁiq,E : (6)
grating contaminants. It is calculated from Eg) as : :
ty=r+ B2, 3) Equations(4)—(6) do not depend on specific assumptions

about ther;,B, distribution or even the existence of mo-
If t, andr are actual times, thep= «x?/4F2, whereF () is rggr;ts ]?f the dI'St,”b“t'ob”' Tr:jese Ci” be US(IaDdDE c?r?pute the
the inverse complementary error function.|f and = are ho arrival times base Ion t.”e joint I 0 ra;:ture
normalized byr,, the characteristic time for nonreactive '€N9th and aperture. Examples will be explored in a future
transport in a single fraction, and by By=1,/q, then 7 publication[12]. Here we concentrate on generic results such

= k2B2/4F 21, is dimensionless and contains all the deter-2° the largen asymptotics.

ministic model parameters. This result is useful in its own

right as it provides a simple method for quick evaluation of VI. ASYMPTOTIC SCALING

the_ importance of retention processes rela_tive to ad_vec_ti_on. In the absence of mass transfer=0, and Eq(1) is a &
This could be used, for example, in comparing the suitabilitysnction, i.e., a particle injected at the first fracture will ar-
of various candidate sites for nuclear waste repositories. Wge at the output of theth fracture after timer. This situ-
consider this normalized form and retain the same symbolsy;i,, corresponds to a random walkroteps, with duration

How the qha_ract_enshc time is defined depends'on the smglg—Or the steps governed bfy, (7). Here r, is the advective
fracture distributions. If the expected values exist, this woul . . . i .
residence time for a single fracture. Basic results on random

be a good choice. walks can be used to deduce the probability densityt foat
large n in this situation. Specificallyf[‘b(t(,)) will tend to a
Gaussian if the individual steps are 11D with finite second
The cumulative arrival tim¢,, is a random quantity due moment, and to an asymmetrical Levy-stable distribution if
to its dependence on the random quantitiesd g, whichin  the IID steps have an infinite-variance power-law distribu-

V. STOCHASTIC ANALYSIS
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tion (see, e.g., Refl13]). When retention processes are in- 1072
cluded, similar results are obtained for the largéistribu-
tion of B and 7 for use in Eq.(4).

In order to explore the consequences of a power-law dis- 107}
tribution more clearly, we neglect the variability in the frac-
ture aperture and fix the aperture at a vabyefor all frac-
tures in the pathway. Although the transmissivity of fractures
is known to be sensitive to the size of the fracture aperture

bility Density
E;I

this is not an issue in the present situation because the volu.g | !
metric flow rateQ is held constant instead of the applied o !
pressure gradient. With aperture fixed, a power-law distribu- i
tion for length implies the same forry, f, (7)) 107% i

-
=Agar, “ ! for large ;. Using our normalizationb,=1, ,‘\f/';}:nce
f,p(m.B)=1.(7)8(7—p), and S '!I

19402 10° 10* 10°

Cumulative Arrival Time

-1
_ 1
ft(b(t¢)_ 4 fT( 2y )’ ™ FIG. 2. Probability density for normalized time of arrivig) of

the cumulative mass fractiog at the output of the 50th fracture.
The results shown are fop=0.22 and three different fracture
where{=\1+4nt,. length distributions: a finite-variance distribution and power-law
Although sums of IID power-law variables are not cov- distributions with exponenta=0.5 and 1.5. The larga PDF for
ered by the central limit theorem, they do have a corresponds, is very different for the different length distributions.
ing limit theorem. Specifically, sums of 1ID power-law vari-
ables tend to the _Levy-stable distributi0||j$4_,13 asn Shown in Fig. 2 isf, (t,) for different length(or ;)
k_)e(;omes large. Using Ecj?). and the generallzgd central distributions. The solid déurves were obtained from E).
limit theorem [1.5] for one'—S|d(.ed power-law variables, we using «=1.5 and 0.5. The dashed curve was obtained by
have the following approximation for large assuming a finite-variance distribution. These results are for
n=>50, and the limit distributions are assumed to be adequate
approximations. The mean residence timg¢sg) =1 for the
a, 1,0,1). (8)  a=1.5and the finite-variance cases. In the absence of diffu-
sion, t, would peak neam(r;)=50. The shift to longer
times is caused by the retention processes. The mean resi-
where (- ;a,C,d,a) is the density for a Levy-stable distri- dence time is not defined far=0.5. In this case we used
bution with levy indexa, width C, location parameted, d,=1. There are significant differences fm¢(t¢) for the
and asymmetry parameter Here the width parameter is three cases. Density for the=0.5 case peaks at much later
given by times, and the distribution is much broader. The differences
between the finite-variance case and éhe 1.5 case are also
significant, especially for early and late arrivals. In particu-
lar, the finite-variance distribution predicts higher probability

-1
ft¢(t¢)z§‘1C;1¢(C;1[§2—n—dn

I'(1—a)cod wal2), o<a<l1

nAy 2/, a=1 9 for early arrival of the contaminant mass. Applications in-

ce | re-a ©) volving migrating contaminants are particularly sensitive to

4 ——|cog mal2)|, l<a<2. early arrivals as this determines the probability of arriving
a—1

before significant decay has occurred. These results suggest
that finite-variance models may be overestimating risk in
wherel'( ) is the gamma function. The location parameter inSOme situations. _ _ ._ _
Eq. (8) is The main feature of Fig. 2 is that the probability density
for t, peaks near the same value for the finite-variance and
a=1.5 cases, but at much later times for e 0.5 case.
nd, 0<a<1 The location of this peakr),, which is the most probable
d,={ nCy(sin(ry/a,)), a=1 (10) value of the arrival time, scales differently withdepending
on the sign ofx— 1. To see this note that the prefactor® in
Eqg. (8) is a relatively slowly varying function of ,, com-
pared to the Levy-stable density which is strongly peaked.
where the probability density for; is confined to the half- Thus the location of the maximum in the Levy-stable density
line 7,>d; when 0<a<1. Equation(8) holds in the limit ~determines? approximately,
n—oo, The quality of the approximation at finite depends
on the initial distribution of single-fracture residence times.
If, for example, f, (1) = (71;,Cy,d;,1) then Eq.(8) is t*_[(Cnx*+dn)27;+ 1]?
exact for alln. ¢ 47

n<7'1>, l<a<2,

1, (12)
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10° . . tion to the asymptotic scaling. The=1.5 and finite-
variance examples closely approximate each other as pre-
dicted. These results show that, as fat?is concerned, the
wl o o ¢ ] important distinction to make when analyzing field data is
5 D between thea<1 and @>1 situations. Misinterpreting a

3 power-law distribution witha>1 as a finite-variance distri-
. bution with a long tail will not result in serious error in the
predictedt;. Such a misinterpretation will, however, mis-
10° 4 represent the prediction uncertainty.

+ finite variance

*

X
»

VIl. CONCLUSIONS

most probable arrival time
[o]

X
0 o E In summary, we developed a stochastic model for trans-
port in fractured rock. This model treats advection as a ran-
x dom flight through fracture segments. Retention in the sur-
o e 5 rounding rock is also modeled stochastically using a second
number of fractures, n macroscopic random variable representing the area available
_ _ _ for diffusion from the fracture to the host rock. Statistics for
FIG. 3. Most probable time of arrivaf, for cumulative mass  the arrival time of a given mass fraction are developed in
fraction ¢ vs number of fractures for power-law and finite-  terms of the statistics for length and aperture, thus providing
variance distributions for fracture length. The solid lines are thesimple alternatives to complex numerical simulations used in
approximate relations in Eq12). The same asymptotic scaling is gnplications. Fundamentally different behaviors are found
obtained fort;, vsn |n.the flnlte-vgrlapce case ang=1.5 power- depending on whether the fracture lengths have finite-
law case, but a very different scaling is obtained when0.5. Here variance or power-law distributions

@ is the power-law exponerit.evy mdeg), ar_1ddl IS the minimum The proposed classification scheme for the asymptotics of

allowed value for fracture length, which is used in place of thet* has | tant imolicati . babilisti

expectation value for length whep<1. ¢ versusn has important implications in probabilistic as-
sessment of risk associated with contaminant migration in

fractured rock. Applying probabilisitic methods appropriate
wherex, is defined implicitly throughy’ (x, ;@,1,0,1)=0.  for finite-variance distributions may result in a serious mis-
C, andd, scale differently witm depending orx. For large ~ 'epresentation of the underlying risk. It is thus important to
n the C, term will dominate over thel, term if a<1. The  Make the distinction between a distribution with long tail and
converse is true for>1. This leads to the following ap- finite-variance distribution as opposed to a power-law distri-
proximations for largen, bution when analyzing subsurface data. Ugih@s the char-
acteristic value for the arrival time instead @f,) is more
robust, but it is still important to distinguish between the
7(7)?n?,  a>1 >1 anda<1 situations. These results clearly demonstrate
6= C2px2n2e  g<1 (12)  the importance of exploring alternatives to classical statisti-
1P ' cal models for natural systems.

Finally, we point out that there is no general solution to
Similar arguments for the finite-variance situation producethe problem of reactive transport in fractured media, as t.he
the same scaling as in the power-law-1 situation. results depend on thr-." type of mass tra}nsfer and chemical

In Fig. 3 we showt’, versusn using four different as- processes occurring Wlthlr_l the hos_t mt_edlum. Our r_e_su!ts ap-

2 A g o ply to the situation of unlimited diffusion and equilibrium
sumptions on the.l distribution. The sqhd .'”.’es are quz). sorption in the host matrix. However, the approach used, a
for a=1.5 (lower lin¢) and 0.5 and the individual data points jariate random walk with one variable controlling advec-
were obtained by numerically locating the maximumfin 5 in fractures and the other controlling the microscopic
[16]. The different scaling witm for the differenta pre-  retention processes, may be of more general methodological
dicted by Eq(12) is clear. Equatiori12) overestimatesy by interest for similar problems with more complex chemical
about a factor of 2 forr=0.5, but gives a good approxima- reactions in the host rock.
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