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Transport and retention in fractured rock: Consequences of a power-law distribution for
fracture lengths
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A probabilistic model for the transport of a reacting species in fractured rock is presented. Particles are
transported by advection through a series ofn rock fractures, and also diffuse and react chemically in the
surrounding porous medium. The fracture attributes are unobserved with predefined statistical distribution. The
time of arrival tf of a given fractionf of an initial solute pulse, a key quantity used in a variety of applica-
tions, is related to the statistics for fracture apertures and lengths. A classification scheme is developed for the
largen asymptotics oftf . The expected value and variance oftf are available explicitly if the aperture and
length distribution have finite variance. The expectedtf is infinite, and its probability distribution is related to
asymmetrical Levy distributions in the case of a power-law distribution for lengths. The most probable time of
arrival is proposed as a robust alternative to the expected value. A scaling transition in the most probabletf

versusn is found as the power-law exponent changes. These results suggest that risks associated with migrat-
ing contaminants may be misrepresented by conventional stochastic analyses.@S1063-651X~98!10606-2#

PACS number~s!: 47.55.Mh, 92.40.kf, 66.30.2h, 05.40.1j
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I. INTRODUCTION

Transport through an interconnected network of fractu
in an otherwise low-permeability medium is a key issue
subsurface geophysics. Such networks allow contaminan
reach and move through groundwater aquifers, provide tra
port pathways for radionuclides escaping future deep-r
waste repositories, and affect the recovery of hydrocarb
from fractured reservoirs. Uncertainty about the fracture
rameters is an unavoidable issue in these applications, as
usually not possible to have direct observation of fract
attributes in the subsurface. For this reason, there is g
interest in developing probabilistic frameworks for assess
uncertainty and risk@1#. Of particular interest is the time
required for solutes to move through a fracture network. S
chastic analysis of this travel time is complicated by mic
scopic exchange processes which act to retain solutes in
host rock. These includematrix diffusion, the process by
which particles diffuse into the stagnant water in the p
space of the surrounding rock@2#, and physical adsorption
and desorption combined with chemical reactions, coll
tively referred to assorption, which acts to further slow the
downstream movement of particles.

Stochastic analysis of transport in fractures is furth
complicated by the wide distribution of fracture attribut
which may be inconsistent with basic assumptions unde
ing widely used statistical concepts. For example, field st
ies of fractured rock often support a power-law model for
distribution of fracture lengthsl 1 @3#, Pr$ l 1.s%} s2a for
large s. In this situation the theoretical moments^ l 1
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verge, and the sample moments are unreliable forq>a. In
particular, the length variance is ill defined, and conditio
required for the central limit theorem are not met whena
,2, the situation observed frequently in field studies. Ev
the mean value is undefined fora,1. Although the result of
a power-law distribution of lengths is well established e
pirically, the consequences of this for transport have
been explored.

We propose a stochastic model for transport and reten
in fractured rock, and use this model to explore the implic
tions of a power-law fracture length distribution. Most stu
ies of transport in fractured rock rely on continuum-lev
descriptions for the fracture network and host medium. Ho
ever, the conditions necessary for employing an effecti
medium approximation to the fracture network are often
met in practice. We focus on the opposite limit where t
fracture network is barely connected, and transport is c
fined to highly localized channels or pathways through
network. Transport in this situation is controlled by larg
scale fluctuations in advection coupled with the microsco
retention processes, a common situation in environme
systems@4#. Advective transport through the fractures
modeled as a random flight with finite-variance or power-l
step distribution. A second random variable correlated w
the step size is introduced to control the retention proces

II. APPROACHES TO MODELING TRANSPORT
IN FRACTURED ROCK

Most studies of transport in fractured media rely
continuum-level models derived, for example, via effectiv
6917 © 1998 The American Physical Society
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medium theory@5#. This general approach can be extend
to include the retention processes of diffusion and sorp
by defining two interacting continua, one for the fractur
and another for the porous medium. These are referred t
dual-porosity models. More sophisticated versions, the d
permeability models, allow for flow in both the fractures a
the rock matrix. These dual-permeability–dual-poros
models require the fracture density to be large compare
the threshold for percolation. They also require the scale
support for the continuum properties to be large compare
the largest fractures. These situations are often not realize
practice. Moreover, these continuum-level models do not
dress explicitly the issue of prediction uncertainty, which
of prime interest in contemporary environmental applic
tions.

Hughes and Sahimi@6# described limitations of the dual
continuum models, and developed an alternative lat
model that allows for transport in both pores and fractu
and exchanges between the two. They analyzed this mod
one spatial dimension and developed an effective-med
approximation. In one spatial dimension, the model in R
@6# is unable to describe diffusion controlled exchanges
tween the fracture and surrounding rock volume. The diff
ential equations describing advection coupled with ma
diffusion can be cast into a lattice form similar to the one
Ref. @6#, but two spatial dimensions are required. Moreov
this lattice formulation results in fracture-to-matrix exchan
rates that are correlated with the site-to-site transition rate
situation in conflict with the basic assumptions in Ref.@6#.
Finally, the approach does not deal explicitly with predicti
uncertainty.

Discrete fracture models constitute another general
proach to modeling transport in fractured rock. In this a
proach, fractures with predefined distributions of apertu
length, and orientation are placed randomly in a simulat
domain. Flow and transport can then be calculated for
simulated fracture network. This Monte Carlo approach
useful for site-specific engineering studies.

The approach taken here is similar to the fracture-netw
simulations in that no attempt is made to define an effec
medium. The difference is that we also do not attempt
exact calculation for transport in the multiply connected n
work. An approximation is considered instead, justified
field results and previous modeling work, that allows for
more generic analysis.

III. FLOW PATH MODEL

Exact analysis of flow and transport in a fracture netwo
requires consideration of the multiple routes that partic
may take. This complication is why studies using discre
fracture models rely on Monte Carlo simulation of the fra
ture networks. Such simulations using field-derived fract
attribute distributions reveal that a small number of transp
pathways are often responsible for the majority of the m
flux @7#. Moreover, when the particle source is spatially
calized, a single dominant transport pathway is often fou
As Sahimi pointed out@5#, this is consistent with a barel
connected network near the percolation threshold. More
portant, it is supported by field experiments on tracer tra
port @8#.
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Our main simplification is to ignore multiple route
through the fracture network and focus on a single flow p
formed by n quasi-two-dimensional fractures connected
series~Fig. 1!. This approximation improves as the fractu
density approaches the percolation threshold. Other fac
improving the quality of this approximation include broa
distribution of apertures and lengths, preferred spatial ori
tation and spatial clustering of fractures, incomplete mixi
at fracture intersections, and spatial localization of the p
ticle source.

In most application scenarios, solute particles are relea
into regions that are small compared to the physical width
a fracture. In the absence of strong dispersion internal to
fracture, particles will not spread out and sample the en
fracture surface, but will be transported along a streamt
determined by the two streamlines bounding the initial
lease. This is consistent with the flow path model describ
in @9–11#. Our flow path model, then, consists of a recta
gular streamtube with spatially varying apertureb(x) and
width w(x), wherex is the distance along the streamtu
trajectory andb(x)!w(x). Water flows through this stream
tube at a constant volumetric rateQ. Aperture variability
internal to each fracture will cause the width to fluctua
aroundw0 , the size of the initial release. Fracture-to-fractu
variability will also cause the local mean in the aperture
undergo stepwise changes as the streamtube passes from
fracture to the next. For simplicity, we neglect internal va
ability in fracture apertures relative to fracture-to-fractu
variability. The flow path then becomes a sequence on
segments, each with a constant aperturebi , a random length
l i , and the same widthw0 . The goal is to relate the statistic
for flux and related quantities at the output of thenth fracture
to the probability density function~PDF! for fracture aper-
tures and length.

FIG. 1. Conceptual model of a migration pathway for a react
species in fractured rock. Fluid flowing through a connected se
of n rock fractures transports solutes along a streamtube determ
by the two streamlines bounding the initial release. Particles diff
into immobile fluid in the rock surrounding the fractures, whe
they may also undergo chemical reactions. The streamtube m
ders through individual fractures and passes from fracture to f
ture as it travels from release point A to outlet B. Branching
fracture intersections is ignored. The streamtube is modeled
rectangular channel with a piecewise constant aperture and a
stant widthw0 set by the size of the initial release. The apertu
and lengths for then fracture segments in the flow path are model
as independent and identically distributed~IID ! random variables.
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IV. RETENTION MODEL

Downstream movement of solutes is slowed by diffus
into an essentially immobile fluid in the rock pore space, a
by linear equilibrium sorption in the matrix. We neglect, f
simplicity, sorption on the fracture surface and concentr
on diffusive effects. If diffusion in the rock matrix is on
dimensional without barriers and orthogonal to the fract
plane, the time-dependent flux of solutes at the output of
nth fracture due to ad function input at the beginning of th
first fracture is@10,11#

r ~ t;t,b!5
H~ t2t!kb

2Ap~ t2t!3/2
expF 2k2b2

4~ t2t!G . ~1!

Here H( ) is the unit step function,k5uADRm, u is the
matrix porosity,Rm511Kd

m , Kd
m is the distribution coeffi-

cient for sorption in the matrix, andD is the coefficient of
diffusion into the rock matrix.

The random variablet is the residence or transit time fo
advection, and the new random variableb controls the rate
of diffusion and surface sorption. The macroscopic rand
variablest andb in Eq. ~1! are

t5
1

QE
0

l

w~x!b~x!dx5(
1

n

t i.
1

q(1

n

l ibi ,

~2!

b5
1

QE
0

l

w~x!dx5(
i

n

b i.
1

q(1

n

l i ,

where q5w0 /Q, and l 5( i
nl i is the total length along the

trajectory. The approximations in Eq.~2! apply within the
context of our piecewise constant approximation to the fl
path.

The time of arrival of a cumulative mass fractionf is an
important quantity in environmental applications. Its val
relative to the half-life for radionuclide decay or chemic
degradation is particularly important when considering m
grating contaminants. It is calculated from Eq.~1! as

tf5t1hb2. ~3!

If tf andt are actual times, thenh5k2/4F2, whereF(f) is
the inverse complementary error function. Iftf and t are
normalized byt0 , the characteristic time for nonreactiv
transport in a single fraction, andb by b05 l 0 /q, then h
5k2b0

2/4F2t0 is dimensionless and contains all the det
ministic model parameters. This result is useful in its o
right as it provides a simple method for quick evaluation
the importance of retention processes relative to advect
This could be used, for example, in comparing the suitabi
of various candidate sites for nuclear waste repositories.
consider this normalized form and retain the same symb
How the characteristic time is defined depends on the sin
fracture distributions. If the expected values exist, this wo
be a good choice.

V. STOCHASTIC ANALYSIS

The cumulative arrival timetf is a random quantity due
to its dependence on the random quantitiest andb, which in
d

te

e
e

l
-

-

f
n.
y
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ls.
e-
d

turn depend on the random apertures and lengths. If
length or aperture moments exist, they can be related to
momentstf , thus providing a simple method for calculatin
the quantities required in applications based on quanti
estimated in field studies. Specific results and examples
be found in@12#.

In the situation of a power-law distribution for length
^b2&, and thus the expected value for the arrival time^tf&,
becomes infinite if matrix diffusion is present (kÞ0). This
is caused by long tails in the length distribution, and sho
not be confused with spatial localization. Physically, p
ticles have a small but significant probability of encounteri
fractures with long residence times and largeb. These rare
fractures dominate the ensemble averages and render sa
statistics unreliable. The implications are fundamental:
fracture lengths have a power-law distribution, then the co
mon practice of calculating expected values and variance
the predicted arrival times of contaminants may be unr
able, and should be replaced with more robust measures
are less sensitive to tails of the distribution.

One alternative to moment analysis is to calculate the
probability density function~PDF! for tf

f tf
~ tf!5E

0

`

f b,tf
~b,tf! db5E

0

`

f b,t~b,tf2hb2!db.

~4!

For independent and identically distributed~IID ! fractures,
the densityf b,t is related to that of the individual fracture
f b1 ,t1

by ann-fold convolution

f̃ b,t~n,v!5@ f̃ b1 ,t1
~n,v!#n, ~5!

where f̃ b,t is the fourier transform off b,t . Using our piece-
wise constant approximation to the flow path,b i5 l i /q, t i
5bi l i /q, and

f b1 ,t1
~b i ,t i !5

q

b i
f l 1 ,b1S b iq,

t i

b i
D . ~6!

Equations~4!–~6! do not depend on specific assumptio
about thet1 ,b1 distribution or even the existence of mo
ments of the distribution. These can be used to compute
PDF of arrival times based on the joint PDF of fractu
length and aperture. Examples will be explored in a futu
publication@12#. Here we concentrate on generic results su
as the largen asymptotics.

VI. ASYMPTOTIC SCALING

In the absence of mass transfer,k50, and Eq.~1! is a d
function, i.e., a particle injected at the first fracture will a
rive at the output of thenth fracture after timet. This situ-
ation corresponds to a random walk ofn steps, with duration
for the steps governed byf t i

(t i). Here t i is the advective
residence time for a single fracture. Basic results on rand
walks can be used to deduce the probability density fortf at
large n in this situation. Specifically,f tf

(tf) will tend to a
Gaussian if the individual steps are IID with finite seco
moment, and to an asymmetrical Levy-stable distribution
the IID steps have an infinite-variance power-law distrib
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tion ~see, e.g., Ref.@13#!. When retention processes are i
cluded, similar results are obtained for the largen distribu-
tion of b andt for use in Eq.~4!.

In order to explore the consequences of a power-law
tribution more clearly, we neglect the variability in the fra
ture aperture and fix the aperture at a valueb0 for all frac-
tures in the pathway. Although the transmissivity of fractu
is known to be sensitive to the size of the fracture apertu
this is not an issue in the present situation because the v
metric flow rateQ is held constant instead of the applie
pressure gradient. With aperture fixed, a power-law distri
tion for length implies the same fort1 , f t1

(t1)

.A0at1
2a21 for larget1 . Using our normalization,b051,

f t,b(t,b)5 f t(t)d(t2b), and

f tf
~ tf!5z21f tS z21

2h D , ~7!

wherez5A114htf.
Although sums of IID power-law variables are not co

ered by the central limit theorem, they do have a correspo
ing limit theorem. Specifically, sums of IID power-law var
ables tend to the Levy-stable distributions@14,15# as n
becomes large. Using Eq.~7! and the generalized centra
limit theorem @15# for one-sided power-law variables, w
have the following approximation for largen:

f tf
~ tf!.z21Cn

21cS Cn
21Fz21

2h
2dnG ;a,1,0,1D , ~8!

wherec(•;a,C,d,a) is the density for a Levy-stable distr
bution with levy indexa, width C, location parameterd,
and asymmetry parametera. Here the width parameter i
given by

nA0

Cn
a

5H G~12a!cos~pa/2!, 0,a,1

2/p, a51

G~22a!

a21
ucos~pa/2!u, 1,a,2.

~9!

whereG( ) is the gamma function. The location parameter
Eq. ~8! is

dn5H nd1 , 0,a,1

nCn^sin~t1 /an!&, a51

n^t1&, 1,a,2,

~10!

where the probability density fort1 is confined to the half-
line t1.d1 when 0,a,1. Equation~8! holds in the limit
n→`. The quality of the approximation at finiten depends
on the initial distribution of single-fracture residence time
If, for example, f t1

(t1)5c(t1 ;a,C1 ,d1 ,1) then Eq.~8! is

exact for alln.
s-

s
e,
lu-

-

d-

.

Shown in Fig. 2 isf tf
(tf) for different length~or t1)

distributions. The solid curves were obtained from Eq.~8!
using a51.5 and 0.5. The dashed curve was obtained
assuming a finite-variance distribution. These results are
n550, and the limit distributions are assumed to be adequ
approximations. The mean residence time is^t1&51 for the
a51.5 and the finite-variance cases. In the absence of d
sion, tf would peak nearn^t1&550. The shift to longer
times is caused by the retention processes. The mean
dence time is not defined fora50.5. In this case we use
d151. There are significant differences inf tf

(tf) for the

three cases. Density for thea50.5 case peaks at much late
times, and the distribution is much broader. The differen
between the finite-variance case and thea51.5 case are also
significant, especially for early and late arrivals. In partic
lar, the finite-variance distribution predicts higher probabil
for early arrival of the contaminant mass. Applications i
volving migrating contaminants are particularly sensitive
early arrivals as this determines the probability of arrivi
before significant decay has occurred. These results sug
that finite-variance models may be overestimating risk
some situations.

The main feature of Fig. 2 is that the probability dens
for tf peaks near the same value for the finite-variance
a51.5 cases, but at much later times for thea50.5 case.
The location of this peak,tf

! , which is the most probable
value of the arrival time, scales differently withn depending
on the sign ofa21. To see this note that the prefactorz21 in
Eq. ~8! is a relatively slowly varying function oftf , com-
pared to the Levy-stable density which is strongly peak
Thus the location of the maximum in the Levy-stable dens
determinestf

! approximately,

tf
! 5

@~Cnx!1dn!2h11#2

4h
21, ~11!

FIG. 2. Probability density for normalized time of arrivaltf of
the cumulative mass fractionf at the output of the 50th fracture
The results shown are forh50.22 and three different fracture
length distributions: a finite-variance distribution and power-la
distributions with exponentsa50.5 and 1.5. The largen PDF for
tf is very different for the different length distributions.
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wherex! is defined implicitly throughc8(x! ;a,1,0,1)50.
Cn anddn scale differently withn depending ona. For large
n the Cn term will dominate over thedn term if a,1. The
converse is true fora.1. This leads to the following ap
proximations for largen,

tf
! .

h^t1&
2n2, a.1

C1
2hx!

2n2/a, a,1.
~12!

Similar arguments for the finite-variance situation produ
the same scaling as in the power-lawa.1 situation.

In Fig. 3 we showtf
! versusn using four different as-

sumptions on thet1 distribution. The solid lines are Eq.~12!
for a51.5 ~lower line! and 0.5 and the individual data poin
were obtained by numerically locating the maximum inf tf
@16#. The different scaling withn for the differenta pre-
dicted by Eq.~12! is clear. Equation~12! overestimatestf

! by
about a factor of 2 fora50.5, but gives a good approxima

FIG. 3. Most probable time of arrivaltf
! for cumulative mass

fraction f vs number of fracturesn for power-law and finite-
variance distributions for fracture length. The solid lines are
approximate relations in Eq.~12!. The same asymptotic scaling
obtained fortf

! vs n in the finite-variance case anda51.5 power-
law case, but a very different scaling is obtained whena50.5. Here
a is the power-law exponent~Levy index!, andd1 is the minimum
allowed value for fracture length, which is used in place of t
expectation value for length whena<1.
r

.

tic
e

tion to the asymptotic scaling. Thea51.5 and finite-
variance examples closely approximate each other as
dicted. These results show that, as far astf

! is concerned, the
important distinction to make when analyzing field data
between thea,1 and a.1 situations. Misinterpreting a
power-law distribution witha.1 as a finite-variance distri
bution with a long tail will not result in serious error in th
predictedtf

! . Such a misinterpretation will, however, mis
represent the prediction uncertainty.

VII. CONCLUSIONS

In summary, we developed a stochastic model for tra
port in fractured rock. This model treats advection as a r
dom flight through fracture segments. Retention in the s
rounding rock is also modeled stochastically using a sec
macroscopic random variable representing the area avail
for diffusion from the fracture to the host rock. Statistics f
the arrival time of a given mass fraction are developed
terms of the statistics for length and aperture, thus provid
simple alternatives to complex numerical simulations used
applications. Fundamentally different behaviors are fou
depending on whether the fracture lengths have fin
variance or power-law distributions.

The proposed classification scheme for the asymptotic
tf

! versusn has important implications in probabilistic as
sessment of risk associated with contaminant migration
fractured rock. Applying probabilisitic methods appropria
for finite-variance distributions may result in a serious m
representation of the underlying risk. It is thus important
make the distinction between a distribution with long tail a
finite-variance distribution as opposed to a power-law dis
bution when analyzing subsurface data. Usingtf

! as the char-
acteristic value for the arrival time instead of^tf& is more
robust, but it is still important to distinguish between thea
.1 anda,1 situations. These results clearly demonstr
the importance of exploring alternatives to classical stati
cal models for natural systems.

Finally, we point out that there is no general solution
the problem of reactive transport in fractured media, as
results depend on the type of mass transfer and chem
processes occurring within the host medium. Our results
ply to the situation of unlimited diffusion and equilibrium
sorption in the host matrix. However, the approach used
bivariate random walk with one variable controlling adve
tion in fractures and the other controlling the microscop
retention processes, may be of more general methodolog
interest for similar problems with more complex chemic
reactions in the host rock.
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